

Simulated Hail Machine

Hail Raiser 2.0

Hail Raiser 2.0

Built in Metrics

Variable Wind Speed (Bypass Hydraulics) (Pitot Static Tube)

Ice Flow (Optical RPM)

Arduino Computer System


Research Questions

Early Season Damage Assessments

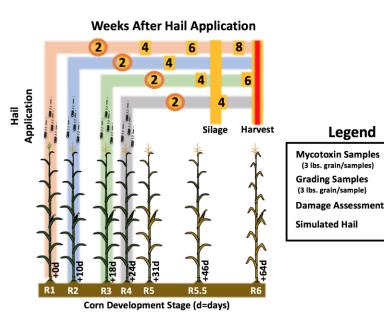
2

Do all surviving plants have similar yield potentials?

3

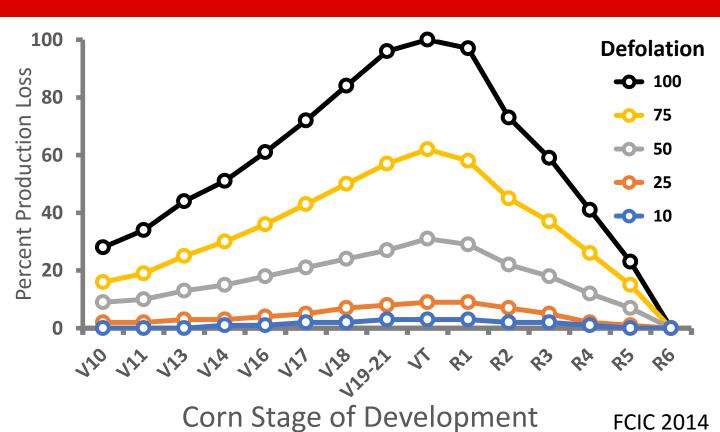
What happens to yield predictions if Goss's wilt is present?

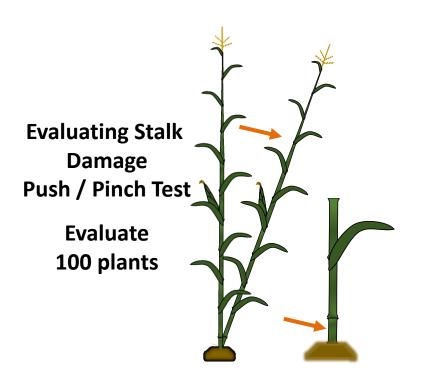
Can we improve final grain yield prediction if we account for plant damage?



Does timing of evaluation change the yield predictions?

Evaluating Hail Damage


- Late season disease interactions
- Bacterial and fungal pathogen interactions
- UAV evaluation methods



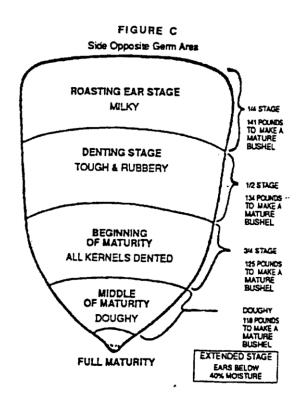
Production Loss and Defoliation

Stalk Damage

Prioritize harvest based on fields with highest frequency of damage stalks

Ear Damage

- Ear damage
 - direct losses
 - ❖ insects
 - Sap beetles
 - **❖** ear diseases



Late Season Evaluations

- Maturity Line Weight
 - 1/100th of an acre (<20 bu/acre)
 - 1/1000th of an acre (>20 bu/acre)
- Determine development stage
 - Break ear in half and determine milk line
- Weight
 - Shell and discard portions of ear without kernels
- Stage x weight factor for total yield

FCIC Loss Adjustment Standards

United States Department of Agriculture



Federal Crop Insurance Corporation

FCIC-25080 (11-2013)

CORN LOSS ADJUSTMENT STANDARDS HANDBOOK

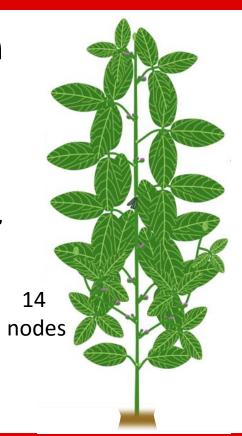
United States Department of Agriculture

Federal Crop Insurance Corporation

FCIC-25010 (10-2016)

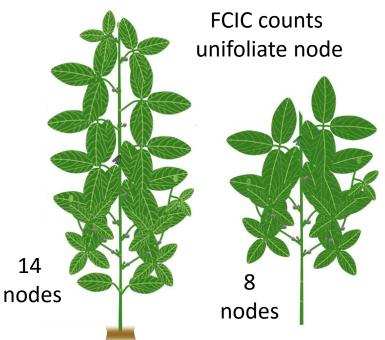
LOSS ADJUSTMENT MANUAL STANDARDS HANDBOOK

2017 and Succeeding Crop Years


PART 11 ADJUSTMENTS TO PRODUCTION

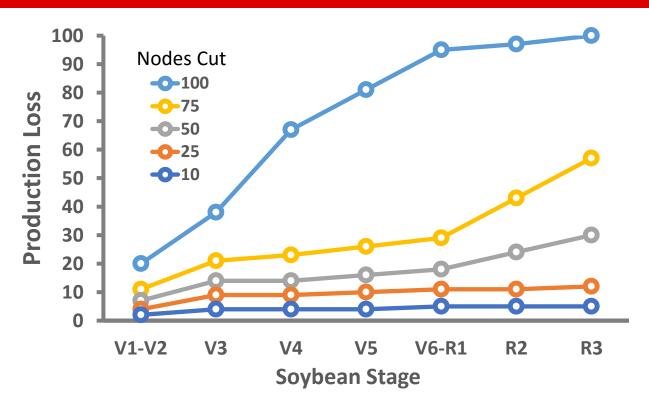
1101 General Information.	218
1102 Quality Adjustment	219
1103 Adjustments for Moisture	246
1104 Adjustments for Foreign Material & Dockage	247
1105 Consolidating Same Moisture, Foreign Material, or Dockage Percentage Entries	251
1106 Averaging Moisture or Foreign Material Percentage Entries	251
1107 Test Weight & Test Weight Factor	252
1108 Flooded Crops	254
1109 Quality Adjustment when Production Contains Mycotoxins, Other Substances, or	
Conditions at Levels Injurious to Human or Animal Health	255
1110-1200 (Reserved)	

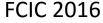
Plant Damage: Node Cut/Breaks


- Node Cut Off / Broken
 - Applies to V1 through R3.5
 - 20 plant sample
 - Determine total number of nodes per plant
 - Begin at node above unifoliate leaves

Plant Damage: Node Cut/Breaks

Node Cut Off / Broken

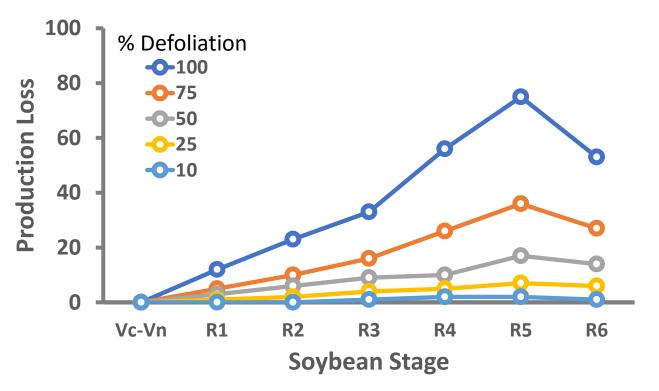


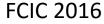

8/14 = 57% Cutoff

Stage: R2

Stage of							
Growth	51	52	53	54	55	56	57
V1-V2	6.9	7.0	7.1	7.2	7.3	7.4	7.5
V3	13.8	14.0	14.2	14.4	14.6	14.9	15.1
V4	13.8	14.0	14.2	14.4	14.6	14.9	15.1
V5	15.8	16.0	16.3	16.5	16.7	17.0	17.2
V6-R1	17.9	18.1	18.3	18.6	18.8	19.1	19.3
R2-R2.5	24.1	24.6	25.2	25.8	26.3	27.0	27.6
R3-R3.5	30.2	31.1	32.0	32.9	33.9	34.8	35.8

Node Cut and Production Loss


Plant Damage: Leaf Defoliation


- Defoliation begins at R1
- Only estimate on trifoliates below cut or broken node
- * 30% = 5% loss
- ❖ Total Loss: 32.6%

Defoliation and Production Loss

Stages: R7-R8

Determines seeds per square foot

> Converted to bushels per acre

Number of live plants in 10-ft row

Select 5 representative plants

Don't count plants without seed

Determine

Average number of plants per foot

Average number of seed per plant

Seed size: 100 seeds in graduated cylinder (cc filled)

Multiply

■ Row Width Factor 30" – 0.80

Row Width	Factor	Row Width	Factor	Row Width	Factor
6"	4.00	22"	1.09	38"	0.63
8"	3.00	24"	1.00	40"	0.60
10"	2.40	26"	0.92	42"	0.57
12"	2.00	28"	0.86	44"	0.55
14"	1.71	30"	0.80	46"	0.52
16"	1.50	32"	0.75	48"	0.50
18"	1.33	34"	0.71	B*	2.22
20"	1.20	36"	0.67		

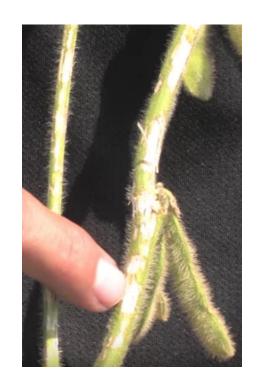
- Multiply
 - Row Width Factor 30" 0.80

Seed Size Factor: 25 CC's per 100

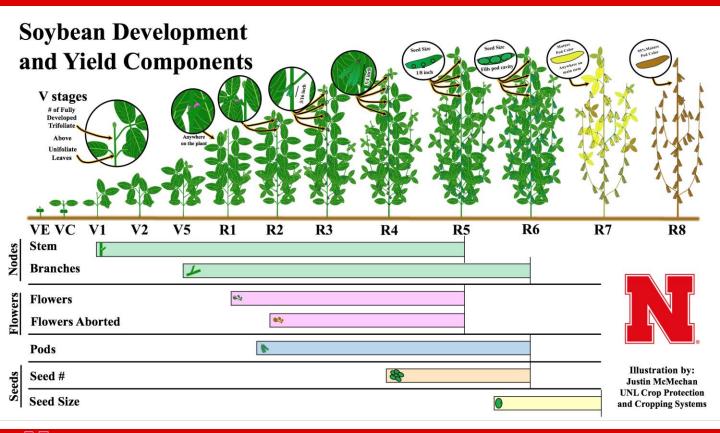
seeds = 0.085

CC's Per 100 Seeds	Factor	CC's Per 100 Seeds	Factor	CC's Per 100 Seeds	Factor
5	0.017	21	0.071	36	0.122
6	0.020	22	0.075	37	0.126
7	0.024	23	0.078	38	0.129
8	0.027	24	0.081	39	0.132
9	0.031	25	0.085	40	0.136
10	0.034	26	0.088	41	0.139
11	0.037	27	0.092	42	0.143
12	0.041	28	0.095	43	0.146
13	0.044	29	0.098	44	0.149
14	0.047	30	0.102	45	0.153
15	0.051	31	0.105	46	0.156
16	0.054	32	0.109	47	0.160
17	0.058	33	0.112	48	0.163
18	0.061	34	0.115	49	0.166
19	0.064	35	0.119	50	0.170
20	0.068				

If unable to obtain 100 mature beans in sample due to immaturity or swelling from excess moisture, use factor .092 unless otherwise authorized.


Multiply

- Row Width Factor 30" 0.80
- Seed Size Factor: 25 CC's per 100 seeds = 0.085
- Plants per foot: 4 plants
- Seeds per plant: 50 seeds
- Yield: 13.6 bu/acre



What about stem damage?

- Difficult to
 evaluate, not taken
 into account by
 adjuster
- Plants may be more susceptible to lodging in the fall

Hail Know

Thank You What questions do you have?

Twitter

@justinmcmechan

Email

justin.mcmechan@unl.edu

