Blog Archives

JenREES 5-31-20

Corn: I really enjoy this stage when corn is just tall enough to give the fields a green cast when looking at them from an angle. There continues to be discussion and questions about uneven corn emergence. Like many, I wasn’t anticipating seeing uneven emergence after having great soil conditions (right moisture and a warming trend of temps) for planting. Variations in soil temp, depth, and moisture can delay germination from a few days or longer. Residue blowing back over the row explained much difference in emergence this year. I wish I would’ve noted the days on my calendar, but there’s a couple warm days in late April during planting where it just seemed like the moisture rapidly left the soil surface. And, in conversations it seems as if others noticed that too. So I think moisture around seed was another factor as was fertilizer burn in some situations. Purdue University has some research which showed yield reductions of 6-9% for plants emerging 1.5 weeks later than a uniformly emerging stand. They also found yields of uneven stands to be similar to planting the stand 1.5 weeks later.

If you’re side-dressing nitrogen and interested in testing different rates, we have some on-farm research protocols available at:  https://go.unl.edu/tv63.

With warmer temperatures anticipated, corn will grow rapidly. This week we wrote an Corn growth stage-Reesarticle in CropWatch regarding proper growth staging of plants; this will be extra critical once we hit V6+. Remember to use the leaf collar method and this is how I explain it. A collar develops at the leaf base near the stalk after each leaf fully expands. Think about collars like the collar on a button-down shirt. The collar flares slightly at one’s neck, just as a true exposed leaf collar flares at the base of the leaf at the stem. Start counting leaves at the base of the plant with the smallest rounded-tip leaf with a collar as #1. From there count every leaf with a true collar. Leaves that are still wrapped in the whorl around the main stem without exposed leaf collars are not counted. I recommend taking a picture inside the end rows to document the growth stage of your field prior to the post-application of herbicide. Next week I will share my experiences with proper growth staging to avoid ear abnormalities. Also be aware of potential off-target movement with dicamba products and higher temperatures.

Soybean: In most cases, soybeans are looking really good. There have been situations this week with herbicide damage to beans that may have been cracking when irrigation or rainfall event occurred allowing some pre-emergent herbicide to enter the row. Pre- herbicides can also rain splash onto cotyledons and first leaves making them look bad, but usually doesn’t kill them unless the weather stays cold and wet. If the plants end up severely pinched below the cotyledons, they won’t survive. Otherwise, keep watching them as they may continue to grow (warm weather will allow them to grow and metabolize the chemical better). I think we’re also possibly seeing some environmental effects from the cold conditions that occurred after planting/emergence when we can’t always explain the appearance of injury on the plant by herbicide. The ‘halo’ effect of ILeVo is another thing that is being mistaken as herbicide and/or environmental injury but it doesn’t last past the cotyledon stage.

Coronavirus Food Assistance Program for Crop Producers Webinar: There will be a webinar on June 4th at Noon (CST) to learn more. Registration is required at the following site: https://go.unl.edu/wj0e. In the meantime, Dr. Brad Lubben has put together an article with more information at: https://go.unl.edu/h3aq. All webinars are also archived at that same web link.

Irrigation Scheduling Equipment: It’s also a great time to get irrigation scheduling equipment installed! I decided to make a quick video instead of writing; it can be found at: https://youtu.be/4r5gn2pvvB4.

IMG_20200528_152438

Sensors prepped and ready for 2020 on-farm research projects!

Gardeners: For all of you gardening for the first time, congrats! Some tips: keep soil moisture even by ensuring plants have around 1” of water/week (Best to water at base of plant; if use sprinkler, do so in early morning). Mulching gardens with leaves, grass clippings, straw, newspapers aids in conserving moisture, reducing weeds, and maintaining stable soil temperature. If herbicides were added to grass clippings, make sure to read the label for if/when they can be applied to a garden. In general, many labels will say grass clippings are safe after 4 mowings.

JenREES 6-9-19

Crop Updates: It’s been interesting seeing growers sharing pics comparing crops on the same dates in 2018 to 2019. They are behind in many cases compared to last year. Yet, we can be thankful for every field that we’ve been able to plant in Nebraska this year! Weed control is something on many minds right now. On corn, please be sure to count collars to determine growth stages. First leaves are sloughing off on V5-V7 plants right now, so slitting open stalks to aid in counting collars is important as we think of herbicide applications. Bob Nielsen from Purdue has a nice recent article with photos to help you with this: http://www.kingcorn.org/news/timeless/VStageMethods.html. When it comes to beans, I’m concerned how much longer the PRE’s will hold. I share this every year in pesticide training to have the POST with residual on a week before you think you need it, even if you don’t see weeds in the field yet. So assess each field as to when your PRE went on, current weed emergence, and plan on your POST a week earlier to overlap when your PRE residual should be running out. Also, with palmer amaranth on people’s minds, consider attending a glyphosate resistant palmer amaranth field day July 10th near Carleton, NE. Dr. Jason Norsworthy from the University of Arkansas will be the featured speaker. For those who’ve heard me speak on palmer or at my pesticide trainings, much of what I share has been what I’ve learned from his presentations and research papers. You can learn more and register at: http://agronomy.unl.edu/palmer. Adding a small grain and diversifying our cropping systems is one way to aid in palmer/waterhemp management. There are several upcoming wheat and pulse crop field days occurring throughout Nebraska in the next two weeks and you can read more about them at: https://go.unl.edu/b65e.

At some point, irrigation may be needed again. Installing irrigation scheduling IMG_20190609_193835equipment now allows you to watch your soil moisture profile as your crops grow, gain better confidence in your readings, and it’s just easier to install them at earlier growth stages when there’s moisture in the profile. Here’s some tips for those using watermark sensors. (As I walk through this, I’m using kilopascals (kpa) for the sensor readings but the same numbers apply to centibars (cb)). First, be sure to prime the sensors to ensure they’re working correctly. Do this by soaking the sensors for at least 24 hours in water. If you still have mud on the sensors, gently remove with your fingers, not with a brush. Then check the readings to ensure they read 10 or less. If they don’t, I allow them to soak another 24 hours and recheck; replace any that don’t read 10 kpa or less. Allow the sensors to dry out to 199 kpa again by setting out in the sun/wind/blowing fans. (Note that water will move into the PVC tube during soaking, so you’ll need to remove the cap and dump the water out if you don’t have a hole drilled at the bottom of the PVC tube. This is also true during the installation process.) When you’re ready to install the sensors, they need to be soaked again, but it should only take them 1-5 minutes to read 10 kpa or less prior to installation. There’s a couple things I’ve learned with installations that help me. First, use an ag consultant’s tube on soil probe to dig the foot wherever the sensor is installed. This allows for a better fit with no air gaps along the sensor. I use a regular soil tube to dig the hole the foot/feet above that to aid in pushing the sensors. In wet, clayey soils, it can be difficult to push the PVC pipe into the ground, so digging the upper holes with a bigger tube helps me with that. The other thing I do is carry my bucket with water for the sensors to the field with me with the sensors. To aid with pushing the sensors in the ground, I wet the PVC tube with water from the bucket prior to installing it. NEVER pour water into the holes and don’t make a slurry mix. I’m hearing several were taught to do this, but it’s not what Nebraska Extension teaches based on Dr. Suat Irmak’s research as it will change the soil moisture of the holes compared to the surrounding soils. Make sure the sensors hit the bottom of the hole and fill in soil where the PVC pipe meets the soil line. Suat shared how he used rubber washers around the top of the PVC pipe at the soil line to aid in water not running down the PVC tube when soil cracks at the surface. For those installing ET gages, a reminder to remove the stopper from the ceramic top and fill the ceramic top with distilled water in addition to the main tube of the ET gage. I fill the ceramic top, allow it to soak into the ceramic plate a little and refill it. Then prime the inner tube with stopper ensuring there’s no air bubbles in the small tube after placing it into the ceramic top. You can also double check for air bubbles by gently removing the glass site gage (by pressing down on the rubber tubing at the base of the site gage), allowing some water to cycle through, and then replacing it.

Maple seedlings: Maple trees have now leafed out and the rain has allowed the abundance of seeds to produce seedlings in people’s lawns and gardens.  I know they look bad because they do at my place too. Mowing is the best way to take care of them in your lawn and it will take several mowings to do so. Don’t lower your mowing height as you want to maintain a healthy grass canopy. Eventually the seedlings will continue to grow to where the mower blade cuts off below the growing point and the seedlings will die. In the flower beds, they are very easy to pull right now. It takes some extra time, but that’s the best way to rid them there.

 

JenREES 6-10-18

IMAG5049

Thank you to Tena with Faller Landscape in York and to all the youth who participated in our 4-H landscape design workshop and helped plant the Nebraska area! It will hopefully be beautiful for fair!

Crop Update: Rain continues to be spotty and windstorms have resulted in various levels of greensnap in some fields. Overall crops are growing and getting a decent canopy. It’s been interesting watching the radar on weather apps as so often they look like precipitation should be occurring yet that’s not always the case. Grateful for all of you who share crop updates-including things such as impacts on hay crops, pastures, etc. and for our farmers working with me on soil moisture monitoring. I was told this past week of the impact of our groundtruthing on the drought monitor; radar would make it appear we’re not as dry as we truly are. So just wanted to share that with you-that your input is important as we then share that input with those who work with the models and maps! I plan to get soil moisture sensors installed in non-irrigated fields in York, Seward, and Clay this week as well.

Soil Moisture Sensors Tips: With cultivating and hilling progressing, some are now looking at getting soil moisture sensors installed. If you utilize watermark sensors, the following are some tips I’ve learned.

Test sensors with wet/dry process to remove all air bubbles:

  • First, make sure sensors read 199.
  • Then, soak sensors for at least 24 hours. They should read 10 or less (Jenny’s note-I realize they may read this in a matter of minutes to hours but it’s our best practice recommendation to ensure all air bubbles are removed).
  • If they don’t read 10 or less, gently rub any soil loose on them with your fingers (don’t use a brush) and allow to continue soaking for another 24-48 hours. If they still don’t read under 10, I don’t use them.
  • Best practice is to then allow the sensors to completely dry out again to 199 to complete the wet/dry process. (Jenny’s note: I realize, due to time constraints, many sensors get installed once they have been soaking and never go through the complete drying process).

Installation:

  • Avoid installing sensors in saturated soil conditions in clayey soils. Doing so allows a thin clay film to develop on the sensors which then affects readings .
  • Prior to installation, the sensors should be soaked again and installed wet. The soaking process only takes a matter of minutes to get back to 10 or below. I carry the water bucket with sensors with me into the field.
  • When soaking, water moves into the PVC pipe, thus it can take time for the water to drain providing accurate readings if not removed. Some sensors have a hole drilled in the PVC pipe above the sensor to allow water to drain. Otherwise, it’s important to remove the caps and tip the sensors over to dump any water that has accumulated in the PVC pipe during the soaking process. I then put the cap back on, take my hand and wet the PVC pipe with water so it pushes in easier. Some like to use WD-40 but my concern with that is it getting on the sensor affecting readings.
  • Install all sensors where the sensor itself sets using an ag consultant tube (can be 12 or 18 inches). An ag consultant tube has a slightly smaller diameter that provides a tight fit for the sensor. Use a regular soil probe for the foot above that. For example, for 1’ sensor, I use ag consultant tube. For 2’ sensor, I use regular probe for first foot and ag consultant tube for second foot. For 3’ sensor, I use regular probe for first 2 feet and ag consultant tube for third foot. The reason for this is in clayey soils that are wet, there’s greater resistance to pushing in that sensor, so this is one way I’ve found which is easier for someone like me to push them in. (Jenny’s note: many have installed sensors with a regular soil probe through the years and that’s also fine. Just know that you may see more water run along side of tube before soil makes a tight fit around where sensor is located. I’ve just found less issues with this when I use the process described above).
  • NEVER pour water into the hole or make a slurry. Make sure the sensor hits the bottom of the hole as air gaps can make the sensor readings inaccurate. Some people find it better to not remove the entire amount of soil for a specific depth and then push the sensor the rest of the way till the correct depth is obtained. I’m not always strong enough to do that so do what works for you as long as the sensor is at the correct depth and there’s no air gaps.

After Installation:

  • Make sure to fill in any gaps around the sensor with soil and make sure there’s no soil cracks around the sensors.
  • Make sure to mark each sensor and flag them well.
  • Sensor readings should equilibrate with the soil within 48-72 hours but especially within a week.
  • If a sensor starts reading really dry, before replacing it, I often remove it and reprime it in the field. This can be done by re-soaking in water for 1 minute or so till it goes back below 10 and then reinstalling in same hole. If it doesn’t go below 10, I replace it. If it reads strange the next week, I also replace it.

ET gages:

  • A reminder to use distilled water in the tube and to fill the ceramic top when you’re also filling the main tube. I usually fill the ceramic top and wait for it to soak up a little then fill again.
  • Prime the ET gage ensuring no air bubbles are in the second tube with the stopper. I always overfill the ET gage to help with priming and ensuring there’s no air bubbles.
  • Excess water can be removed and also air bubbles can be removed by gently pulling down on the glass site gauge tube at the rubber base and releasing extra water from it. Air bubbles can also be released in this process. Place the site gauge tube back in place when you are at a water level between ‘0 and 1’. Then place one red marker ring on that beginning start level.
  • I always plan to refill the ET gage when it gets down to ‘9’ on the site tube.
  • The green canvas cover should be replaced at least every 2 years and be sure to dust it off and the white membrane below it.

In another column I’ll share how to use the two tools together for irrigation scheduling. All videos and charts with more information can be found at: https://water.unl.edu/category/nawmn. This is a checklist I made awhile back with Daryl Andersen which has more detail and could honestly be updated: http://www.littlebluenrd.org/pdf’s/forms/etgage_sensor_checklist.pdf but may also be helpful.

Tree Damage: Recent windstorms have caused for many downed branches and even some trees. When removing broken branches or dead branches, it’s important to prune correctly for tree health. Correct pruning of larger branches can often involve 3 cuts per limb. The first two cuts are made away from the trunk of the tree to remove most of the weight of the limb. The third cut is near the trunk itself at the bark collar ridge where the tree will eventually seek to heal. I like this Backyard Farmer YouTube video as a good visual of correct pruning: https://youtu.be/9cl0Qxm7npk. Pruning is best done in the dormant season of February and March. It’s best avoided in April and May when trees are putting energy into new leaves and in the fall as fall pruning can result in growth instead of the tree preparing for and going into dormancy. Some great resources with more information on proper pruning are: https://go.unl.edu/v9uf, https://go.unl.edu/gdb9, and this blog post https://jenreesources.com/2014/04/20/proper-tree-pruning.

2015 Nebraska Ag Water Mgmt Network Meeting

NAWMN15

April 2, 2015 is the date for the 2nd annual Nebraska Ag Water Management Network (NAWMN) Meeting! Come hear the latest in irrigation research and share with your peers during the innovation sharing and Q/A discussions. There’s no charge but please RSVP to Gary Zoubek at (402) 362-5508 or gary.zoubek@unl.edu.

Crop Update 6-20-13

The sun has been welcomed and crops are rapidly growing in South Central Nebraska!  Corn right now is between V6-V8 (6-8 leaf) for the most part.  Quite a few farmers were side-dressing and Corn that's been hilled in south-central Nebraska.hilling corn the past two weeks.  It never fails that corn looks a little stressed after this as moisture is released from the soil and roots aren’t quite down to deeper moisture.

Installing watermark sensors for irrigation scheduling, we’re finding good moisture to 3 feet in all fields in the area.  The driest fields are those which were converted from pasture last year and we want to be watching the third foot especially in those fields.  Pivots are running in some fields because corn looks stressed, but there’s plenty of moisture in the soil based on the watermark sensor readings I’m receiving for the entire area.  So we would recommend to allow your crops to continue to root down to uptake deeper moisture and nitrogen.

The last few weeks we observed many patterns from fertilizer applications in fields but as corn and root systems are developing, they are growing out of it.  We’ve also observed some rapid growth syndrome in plants.  This can result from the quick transition we had from cooler temperatures to warmer temperatures, which leads to rapid leaf growth faster than they can emerge from the whorl.  Plants may have some twisted whorls and/or lighter discoloration of theseOn-farm Research Cooperators, Dennis and Rod Valentine, get ready to spray their corn plots with a sugar/water solution.  Their study is to determine the effect of applying sugar to corn on yield and economics.  leaves, but they will green up upon unfurling and receiving sunlight.  This shouldn’t affect yield.

Damping off has been a problem in areas where we had water ponded or saturated conditions for periods of time.  We’ve also observed some uneven emergence in various fields from potentially a combination of factors including some cold shock to germinating seedlings.

We began applying sugar to our on-farm research sugar vs. check studies in corn.  We will continue to monitor disease and insect pressure in these plots and determine percent stalk rot and yield at the end of the season.

Leaf and stripe rust can be observed in wheat fields in the area and wheat is beginning to turn.  We had some problems with wheat streak mosaic virus in the area again affecting producers’ neighboring fields when volunteer wheat wasn’t killed last fall.  Alfalfa is beginning to regrow after first cutting and we’re encouraging producers to look for alfalfa weevils.  All our crops could really use a nice slow rain right now!

Preparing Irrigation Scheduling Equipment

It’s wonderful receiving the rain we did, seeing how quickly planting progress came along, and how quickly corn is popping out of the Gary Zoubek, UNL Extension shows a producer how to install and use an ET gage.ground!  Being mid-May, it’s time to get our Evapotranspiration (ET) gages out.  A reminder to only use distilled water in the gages, make sure to fill up the ceramic top portion of the gage before inserting the stopper, and gently dust off the ceramic top and replace the white membrane and green canvas cover.  We recommend replacing those membranes and covers each year so if you need a new one, please let the Natural Resources Districts (NRDs) or me know and we’ll get you a new one!  For those of you recording ET information online, please be sure to do so consistently each week to help your neighbors and crop consultants.

Early after crop emergence is the best time to install watermark sensors.  For those of you with watermark sensors, read them to ensure they read 199 kpa (dry).  Then “prime” them first by soaking them for 24 hours in water to ensure all the air bubbles have been released.  The sensors should have a reading of 10 kpa or below to be considered good.  If they read higher than that, either continue soaking them another 24 hours and read them again, or plan that they no longer are reading correctly and replace them with others from the NRDs.  Remember after soaking sensors that water moves up into the PVC pipe via capillary action, so be sure to dump the water out of the pipe Brandy VanDeWalle, UNL Extension, shows a producer  how to read watermark sensors after installation.as well.

When installing the sensors, be sure to install them wet, drain excess water, and look for areas that are not compacted, avoid tractor wheel tracks, and look for even spacing of plants.  Carefully install without breaking off any plants (thus easier when plants are small!).  It’s also important not to install sensors into extremely wet fields.  What we have found is that a thin soil layer can cover the sensor when pushing it into the soil of very wet fields.  When that soil layer dries, it can provide a reading of 199 saying the sensor is dry when it truly isn’t.  If this happens to you, simply remove the sensor, rewet for one minute and re-install.  It should be acclimated to field conditions within 48 hours.  If you have any questions regarding the installation process, please let the NRDs or your local Extension Educator know.  You can also view videos of the installation process and receive additional information to answer your questions.

2012 Last Irrigation Scheduling

While farmers may be tired of irrigating right now, I think all who have irrigation are thankful for it in such a dry year.  Honestly, thankfully with our irrigation we have some of the best looking crops in the Corn Belt right now.  Even so, with corn that hasn’t been replanted nearing dent or stages of starch fill, you may be wondering how to schedule for your last irrigation.

For those of you in our Nebraska Ag Water Management Network using watermark sensors, the goal is to use them to determine when the soil profile reaches 60% depletion (for silty-clay soils in our area aim for an average of 160 kpa of all your sensors).  You may be thinking, “An average of 90kpa was hard enough!” but as Daryl Andersen from the Little Blue Natural Resources District points out, you’re only taking an additional 0.30 inches out of each foot.  So if you’re averaging 90kpa on your three sensors, you have depleted 2.34 inches in the top three feet so you still have 0.96 inches left (see the Soil Moisture Depletion Chart).  If you add the fourth foot (using a similar number from the third foot), it would bring the water available to the plant up to 1.28”. 

At beginning dent corn you need 24 days or 5 inches of water to finish the crop to maturity.  If you subtract 1.28 from 5 you will need 3.72” to finish out the crop.  Corn at ½ milk line needs 13 days or 2.25” to finish the crop to maturity-so subtracting it from 1.28 would be only 0.97”.  

Soybeans at the beginning of seed enlargement (R5) need 6.5”.  Soybeans in R6 or full seed which needs 3.5 inches yet for maturity.  Subtracting off the 1.28” in the four foot profile would lead to 2.22”.  The UNL NebGuide Predicting the Last Irrigation of the Season provides good information on how determine your last irrigation in addition to showing charts on how much water the crop still needs at various growth stages.  

Several people I’ve talked to who have been irrigating using watermark sensors aren’t replenishing the second foot, so you may have a few rounds yet to go  on corn and beans.  For a quick way to know where you’re at, think about irrigating this way as explained by Daryl Andersen at the Little Blue Natural Resources District:

One way to look at this is by the numbers of days left.  At 1/4 starch, there are about 19 days before maturity so you can let your sensors average 130kpa on the first week and 150kpa on the next week.  If these targets are met during the week, you would put on about 1 inch of water.  By going to these numbers, it might give you a higher probability for rain in the next couple of weeks.  I’m hoping for many answered prayers that we will see rain in August!

#Crop Update

While every growing season is unique and there’s an element of risk involved, this year seems to take the cake.  

Drought conditions have affected much of Nebraska.  In our area in south-central Nebraska particularly in our southern tier of counties, we’re seeing brown pastures and alfalfa that stopped growing.  Wheat was harvested nearly a month early and yields range from 0-50 bu/acre depending on if it was hit by the hail storm Memorial Day weekend which totaled it out.

I’m unsure how many planting dates we currently have in Clay County!  The spring planting season went so well with corn and many beans being planted in April.  Soybeans planted in April that haven’t received hail are forming a nice canopy.  Corn that hasn’t received  hail should be tasseling by beginning of July.  One Clay Co. field planted in March was only 3 leaves from tasseling when I took this picture this week and looks great (it’s probably 2 leaves by now!).  Adding another picture from a farmer friend Bob Huttes near Sprague, NE showing his field currently tasseled out and love the smiley face barn 🙂

But then there’s the hail damaged fields.  The hail pattern has been fairly similar all year for this area of the State with some producers receiving four consecutive hail events on their fields.  Every week of May was spent helping our producers determine replant decisions, particularly for soybeans…leaving irrigated stands of 85K and dryland stands of 60-65K when beans were smaller before stem bruising was so severe later.  We would leave a stand one week and end up needed to replant after the hail hit again the following week.  Some farmers got through the first two hail storms but the Memorial Day weekend storm did them in.  I never saw hail like where ground zero of this storm occurred.  After replanting after that weekend, they received yet another hail storm last week with the wonderful, much needed deluge of rain we received in the county.  My heart hurts for these farmers yet for the most part they have good attitudes and are making the most of it.  That’s the way farming is…lots of risk, thus an abundance of faith and prayer is necessary too.  One farmer I talked to has had hail on his house seven times this year (including prior to planting).

Pivots have also been running like crazy prior to the rain last Thursday night where we received 3.30-4.40 inches in the county.  Installing watermark sensors for irrigation scheduling, we were able to show the farmers that there was truly moisture deeper in the soil profile and attempted to convince them to hold off.  It’s a hard thing to hold off on water when the neighbors are irrigating, but several farmers who didn’t irrigate told me they were able to let the rain soak in and their plants weren’t leaning after that rain because the ground wasn’t saturated prior to the rain event.  

Crop Water Use Comparison Study

Water use efficiency (or crop water productivity) is important in crop production. The seed Industry has invested scientific efforts and financial resources into developing hybrids and varieties that can better tolerate environmental stresses such as water stress.

Rainfed corn has increased in acres, replacing sorghum year after year.  This trend may be partly due to the basis price, herbicide options, and newer corn hybrids bred with root systems to better withstand water stress.  In 2009 the question was posed, “Is sorghum still the most crop-water-use-efficient crop, given newer corn hybrids in rainfed fields are providing decent yields and more herbicide options?” To answer the question the Nebraska Grain Sorghum Board funded a project in south-central Nebraska.

On-farm research was conducted for three years in rainfed production fields near Lawrence with the most adapted and high-yielding corn, sorghum, and soybean hybrids and varieties for that area. The research was conducted in no-till fields where the previous crop had been sorghum. A randomized complete block design with three replications was used.

Corn and soybean were planted between May 5 and May 7; sorghum planting ranged from May 19 to May 28. Corn was planted at 20,000 seeds/acre, soybean at 135,000, and sorghum at 65,000.  Rainfall in this area varied greatly from 2009 to 2011: 2009 was dry with only 10 inches of rain during the growing season; 2010 had 16 inches, and 2011 had 20.5 inches from May 1 to October 15.

To monitor soil moisture, Watermark sensors were placed at 1-, 2-, 3-, and 4-foot depths in each plot and the readings were recorded hourly throughout the growing season via Watermark dataloggers. Data were compiled and analyzed to determine crop water use efficiency (CWUE) values. The CWUE values were determined from the Watermark soil moisture data, actual crop water use (evapotranspiration), and grain yield for each crop.

Results:  Table 1 shows actual crop evapotranspiration (ET) in inches, grain yield, and crop water use efficiency for each crop in each year. Corn was the most water use efficient of the three in 2009. Sorghum results in 2009 might have been different if rainfall had occurred to activate the sorghum herbicide as grass pressure was heavy in the sorghum plots that dry year. In 2010-2011, sorghum yielded the most, had good weed control, and had the best crop water use efficiency value.

Table 1.  Crop water use efficiencies in on-farm field trials conducted near Lawrence, Nebraska, 2009-2011.
2011
ET (in)
2011
Yield
(bu/ac)
2011
CWUE
(bu/in)
 2010
ET (in)
2010
Yield
(bu/ac)
 2010
CWUE
(bu/in)
2009
ET (in)
2009
Yield
(bu/ac)
2009
CWUE
(bu/in)
 Corn  22.0  127.2  5.8  23.3  101.2 4.3  14.5  97.5  6.7
 Soybean  21.3  61.3  2.9  22.0  44.0  2.0  14  33.4  2.4
 Sorghum  17.3  138.9  8.0  21.3  118.0  5.5  13.7  77.4  5.6

Overall in this study, sorghum had a crop water use efficiency of at least 5.5 bu/inch; corn, at least 4.3 bu/inch, and soybean, at least 2.0 bu/inch. These results show sorghum’s continued value as a crop that efficiently uses water. Sorghum produced more grain per unit of water used than corn or soybean, an important benefit in water-limited environments. On a three-year average, sorghum resulted in 1.2 bu/inch and 3.5 bu/inch more grain production per inch of water used than corn and soybean, respectively. This study did not compare sorghum or soybean with new “drought-tolerant” corn hybrids.  Graphs, charts, and production information can be found here.

Acknowledgements:  Special thanks to John Dolnicek of Lawrence, Nebraska for allowing this research to be conducted on his farm and for all his help and efforts to make it a successful study and to the Nebraska Grain Sorghum Board for funding this study.

Crazy?

Crazy?  Perhaps!  Which according to one of my farmer friends is a little typical of me when I put my mind to figuring out something.  So I had been analyzing my crop water use data from my dryland corn, sorghum, soybean crop water use comparison study.  It’s the one where we had coon problems this year and ended up trapping a skunk!  I noticed how much the soil moisture profile had been depleted and knowing we’ve received minimal precip during fall and winter, I wondered what our soil moisture profile would be for dryland fields by planting.  During a meeting yesterday I thought it would be good to install some watermark sensors to determine soil moisture profile recharge with the pending storm.  Problem was I was at a meeting over 100 miles from my equipment and the pending storm was starting today.  But I was still determined to get them in the ground as early as possible in order to measure the soil moisture status.  So I woke up at 4:00 a.m. to heavy rain.  Great!  It was such a gorgeous day yesterday, and the past week…past month…  The first thing my colleagues had asked me when I told them my idea was “Why didn’t you think of this sooner?”  Answer:  “Guess I needed a precipitation event!”  

So I drive to the field in the rain, get the gear together and start installing the sensors.  First foot went in easy with the rain that had soaked in.  Then it seemed like I tried for 20 minutes (although probably not near that long) putting all my weight on the soil probe to get the 2nd foot in.  Wind-driven rain soaked my jeans since I didn’t have rainpants on…fingers were numb from the cold.  I kept telling myself this will still hopefully be worth it!  On the research data from this field, the second foot was driest of all the crops (was depleted well above plant available water).  I got the third foot in and John, the man who farmed the field appeared.
While he thought it was crazy he graciously volunteered to help as he always does.  He put in the rest of the sensors while I
hooked everything up.  

The last several years we have been blessed to have a fully charged profile going into planting.  Even with this rain/snow event, I’m not sure we will have that in dryland fields in this area of Nebraska.  So I thought it would be interesting to know where we stood before planting and figured the farmers may want to know that as well.  Perhaps a little crazy regarding installing the sensors on such a bad weather day but hoping the data in the end will benefit our farmers and be worth it!